1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
// Copyright 2015-2018 Parity Technologies (UK) Ltd.
// This file is part of Parity.

// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Parity.  If not, see <http://www.gnu.org/licenses/>.

//! Snapshot creation, restoration, and network service.
//!
//! Documentation of the format can be found at
//! https://github.com/paritytech/parity/wiki/Warp-Sync-Snapshot-Format

use std::collections::{HashMap, HashSet};
use std::sync::Arc;
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use hash::{keccak, KECCAK_NULL_RLP, KECCAK_EMPTY};

use account_db::{AccountDB, AccountDBMut};
use blockchain::{BlockChain, BlockProvider};
use engines::EthEngine;
use header::Header;
use ids::BlockId;

use ethereum_types::{H256, U256};
use hashdb::HashDB;
use kvdb::DBValue;
use snappy;
use bytes::Bytes;
use parking_lot::Mutex;
use journaldb::{self, Algorithm, JournalDB};
use kvdb::KeyValueDB;
use trie::{TrieDB, TrieDBMut, Trie, TrieMut};
use rlp::{RlpStream, Rlp};
use bloom_journal::Bloom;

use self::io::SnapshotWriter;

use super::state_db::StateDB;
use super::state::Account as StateAccount;

use crossbeam::scope;
use rand::{Rng, OsRng};

pub use self::error::Error;

pub use self::consensus::*;
pub use self::service::{Service, DatabaseRestore};
pub use self::traits::SnapshotService;
pub use self::watcher::Watcher;
pub use types::snapshot_manifest::ManifestData;
pub use types::restoration_status::RestorationStatus;
pub use types::basic_account::BasicAccount;

pub mod io;
pub mod service;

mod account;
mod block;
mod consensus;
mod error;
mod watcher;

#[cfg(test)]
mod tests;

mod traits;

// Try to have chunks be around 4MB (before compression)
const PREFERRED_CHUNK_SIZE: usize = 4 * 1024 * 1024;

// Maximal chunk size (decompressed)
// Snappy::decompressed_len estimation may sometimes yield results greater
// than PREFERRED_CHUNK_SIZE so allow some threshold here.
const MAX_CHUNK_SIZE: usize = PREFERRED_CHUNK_SIZE / 4 * 5;

// Minimum supported state chunk version.
const MIN_SUPPORTED_STATE_CHUNK_VERSION: u64 = 1;
// current state chunk version.
const STATE_CHUNK_VERSION: u64 = 2;

/// A progress indicator for snapshots.
#[derive(Debug, Default)]
pub struct Progress {
	accounts: AtomicUsize,
	blocks: AtomicUsize,
	size: AtomicUsize, // Todo [rob] use Atomicu64 when it stabilizes.
	done: AtomicBool,
}

impl Progress {
	/// Reset the progress.
	pub fn reset(&self) {
		self.accounts.store(0, Ordering::Release);
		self.blocks.store(0, Ordering::Release);
		self.size.store(0, Ordering::Release);

		// atomic fence here to ensure the others are written first?
		// logs might very rarely get polluted if not.
		self.done.store(false, Ordering::Release);
	}

	/// Get the number of accounts snapshotted thus far.
	pub fn accounts(&self) -> usize { self.accounts.load(Ordering::Acquire) }

	/// Get the number of blocks snapshotted thus far.
	pub fn blocks(&self) -> usize { self.blocks.load(Ordering::Acquire) }

	/// Get the written size of the snapshot in bytes.
	pub fn size(&self) -> usize { self.size.load(Ordering::Acquire) }

	/// Whether the snapshot is complete.
	pub fn done(&self) -> bool  { self.done.load(Ordering::Acquire) }

}
/// Take a snapshot using the given blockchain, starting block hash, and database, writing into the given writer.
pub fn take_snapshot<W: SnapshotWriter + Send>(
	engine: &EthEngine,
	chain: &BlockChain,
	block_at: H256,
	state_db: &HashDB,
	writer: W,
	p: &Progress
) -> Result<(), Error> {
	let start_header = chain.block_header_data(&block_at)
		.ok_or(Error::InvalidStartingBlock(BlockId::Hash(block_at)))?;
	let state_root = start_header.state_root();
	let number = start_header.number();

	info!("Taking snapshot starting at block {}", number);

	let writer = Mutex::new(writer);
	let chunker = engine.snapshot_components().ok_or(Error::SnapshotsUnsupported)?;
	let snapshot_version = chunker.current_version();
	let (state_hashes, block_hashes) = scope(|scope| {
		let writer = &writer;
		let block_guard = scope.spawn(move || chunk_secondary(chunker, chain, block_at, writer, p));
		let state_res = chunk_state(state_db, &state_root, writer, p);

		state_res.and_then(|state_hashes| {
			block_guard.join().map(|block_hashes| (state_hashes, block_hashes))
		})
	})?;

	info!("produced {} state chunks and {} block chunks.", state_hashes.len(), block_hashes.len());

	let manifest_data = ManifestData {
		version: snapshot_version,
		state_hashes: state_hashes,
		block_hashes: block_hashes,
		state_root: state_root,
		block_number: number,
		block_hash: block_at,
	};

	writer.into_inner().finish(manifest_data)?;

	p.done.store(true, Ordering::SeqCst);

	Ok(())
}

/// Create and write out all secondary chunks to disk, returning a vector of all
/// the hashes of secondary chunks created.
///
/// Secondary chunks are engine-specific, but they intend to corroborate the state data
/// in the state chunks.
/// Returns a list of chunk hashes, with the first having the blocks furthest from the genesis.
pub fn chunk_secondary<'a>(mut chunker: Box<SnapshotComponents>, chain: &'a BlockChain, start_hash: H256, writer: &Mutex<SnapshotWriter + 'a>, progress: &'a Progress) -> Result<Vec<H256>, Error> {
	let mut chunk_hashes = Vec::new();
	let mut snappy_buffer = vec![0; snappy::max_compressed_len(PREFERRED_CHUNK_SIZE)];

	{
		let mut chunk_sink = |raw_data: &[u8]| {
			let compressed_size = snappy::compress_into(raw_data, &mut snappy_buffer);
			let compressed = &snappy_buffer[..compressed_size];
			let hash = keccak(&compressed);
			let size = compressed.len();

			writer.lock().write_block_chunk(hash, compressed)?;
			trace!(target: "snapshot", "wrote secondary chunk. hash: {:x}, size: {}, uncompressed size: {}",
				hash, size, raw_data.len());

			progress.size.fetch_add(size, Ordering::SeqCst);
			chunk_hashes.push(hash);
			Ok(())
		};

		chunker.chunk_all(
			chain,
			start_hash,
			&mut chunk_sink,
			PREFERRED_CHUNK_SIZE,
		)?;
	}

	Ok(chunk_hashes)
}

/// State trie chunker.
struct StateChunker<'a> {
	hashes: Vec<H256>,
	rlps: Vec<Bytes>,
	cur_size: usize,
	snappy_buffer: Vec<u8>,
	writer: &'a Mutex<SnapshotWriter + 'a>,
	progress: &'a Progress,
}

impl<'a> StateChunker<'a> {
	// Push a key, value pair to be encoded.
	//
	// If the buffer is greater than the desired chunk size,
	// this will write out the data to disk.
	fn push(&mut self, data: Bytes) -> Result<(), Error> {
		self.cur_size += data.len();
		self.rlps.push(data);
		Ok(())
	}

	// Write out the buffer to disk, pushing the created chunk's hash to
	// the list.
	fn write_chunk(&mut self) -> Result<(), Error> {
		let num_entries = self.rlps.len();
		let mut stream = RlpStream::new_list(num_entries);
		for rlp in self.rlps.drain(..) {
			stream.append_raw(&rlp, 1);
		}

		let raw_data = stream.out();

		let compressed_size = snappy::compress_into(&raw_data, &mut self.snappy_buffer);
		let compressed = &self.snappy_buffer[..compressed_size];
		let hash = keccak(&compressed);

		self.writer.lock().write_state_chunk(hash, compressed)?;
		trace!(target: "snapshot", "wrote state chunk. size: {}, uncompressed size: {}", compressed_size, raw_data.len());

		self.progress.accounts.fetch_add(num_entries, Ordering::SeqCst);
		self.progress.size.fetch_add(compressed_size, Ordering::SeqCst);

		self.hashes.push(hash);
		self.cur_size = 0;

		Ok(())
	}

	// Get current chunk size.
	fn chunk_size(&self) -> usize {
		self.cur_size
	}
}

/// Walk the given state database starting from the given root,
/// creating chunks and writing them out.
///
/// Returns a list of hashes of chunks created, or any error it may
/// have encountered.
pub fn chunk_state<'a>(db: &HashDB, root: &H256, writer: &Mutex<SnapshotWriter + 'a>, progress: &'a Progress) -> Result<Vec<H256>, Error> {
	let account_trie = TrieDB::new(db, &root)?;

	let mut chunker = StateChunker {
		hashes: Vec::new(),
		rlps: Vec::new(),
		cur_size: 0,
		snappy_buffer: vec![0; snappy::max_compressed_len(PREFERRED_CHUNK_SIZE)],
		writer: writer,
		progress: progress,
	};

	let mut used_code = HashSet::new();

	// account_key here is the address' hash.
	for item in account_trie.iter()? {
		let (account_key, account_data) = item?;
		let account = ::rlp::decode(&*account_data)?;
		let account_key_hash = H256::from_slice(&account_key);

		let account_db = AccountDB::from_hash(db, account_key_hash);

		let fat_rlps = account::to_fat_rlps(&account_key_hash, &account, &account_db, &mut used_code, PREFERRED_CHUNK_SIZE - chunker.chunk_size(), PREFERRED_CHUNK_SIZE)?;
		for (i, fat_rlp) in fat_rlps.into_iter().enumerate() {
			if i > 0 {
				chunker.write_chunk()?;
			}
			chunker.push(fat_rlp)?;
		}
	}

	if chunker.cur_size != 0 {
		chunker.write_chunk()?;
	}

	Ok(chunker.hashes)
}

/// Used to rebuild the state trie piece by piece.
pub struct StateRebuilder {
	db: Box<JournalDB>,
	state_root: H256,
	known_code: HashMap<H256, H256>, // code hashes mapped to first account with this code.
	missing_code: HashMap<H256, Vec<H256>>, // maps code hashes to lists of accounts missing that code.
	bloom: Bloom,
	known_storage_roots: HashMap<H256, H256>, // maps account hashes to last known storage root. Only filled for last account per chunk.
}

impl StateRebuilder {
	/// Create a new state rebuilder to write into the given backing DB.
	pub fn new(db: Arc<KeyValueDB>, pruning: Algorithm) -> Self {
		StateRebuilder {
			db: journaldb::new(db.clone(), pruning, ::db::COL_STATE),
			state_root: KECCAK_NULL_RLP,
			known_code: HashMap::new(),
			missing_code: HashMap::new(),
			bloom: StateDB::load_bloom(&*db),
			known_storage_roots: HashMap::new(),
		}
	}

	/// Feed an uncompressed state chunk into the rebuilder.
	pub fn feed(&mut self, chunk: &[u8], flag: &AtomicBool) -> Result<(), ::error::Error> {
		let rlp = Rlp::new(chunk);
		let empty_rlp = StateAccount::new_basic(U256::zero(), U256::zero()).rlp();
		let mut pairs = Vec::with_capacity(rlp.item_count()?);

		// initialize the pairs vector with empty values so we have slots to write into.
		pairs.resize(rlp.item_count()?, (H256::new(), Vec::new()));

		let status = rebuild_accounts(
			self.db.as_hashdb_mut(),
			rlp,
			&mut pairs,
			&self.known_code,
			&mut self.known_storage_roots,
			flag
		)?;

		for (addr_hash, code_hash) in status.missing_code {
			self.missing_code.entry(code_hash).or_insert_with(Vec::new).push(addr_hash);
		}

		// patch up all missing code. must be done after collecting all new missing code entries.
		for (code_hash, code, first_with) in status.new_code {
			for addr_hash in self.missing_code.remove(&code_hash).unwrap_or_else(Vec::new) {
				let mut db = AccountDBMut::from_hash(self.db.as_hashdb_mut(), addr_hash);
				db.emplace(code_hash, DBValue::from_slice(&code));
			}

			self.known_code.insert(code_hash, first_with);
		}

		let backing = self.db.backing().clone();

		// batch trie writes
		{
			let mut account_trie = if self.state_root != KECCAK_NULL_RLP {
				TrieDBMut::from_existing(self.db.as_hashdb_mut(), &mut self.state_root)?
			} else {
				TrieDBMut::new(self.db.as_hashdb_mut(), &mut self.state_root)
			};

			for (hash, thin_rlp) in pairs {
				if !flag.load(Ordering::SeqCst) { return Err(Error::RestorationAborted.into()) }

				if &thin_rlp[..] != &empty_rlp[..] {
					self.bloom.set(&*hash);
				}
				account_trie.insert(&hash, &thin_rlp)?;
			}
		}

		let bloom_journal = self.bloom.drain_journal();
		let mut batch = backing.transaction();
		StateDB::commit_bloom(&mut batch, bloom_journal)?;
		self.db.inject(&mut batch)?;
		backing.write_buffered(batch);
		trace!(target: "snapshot", "current state root: {:?}", self.state_root);
		Ok(())
	}

	/// Finalize the restoration. Check for accounts missing code and make a dummy
	/// journal entry.
	/// Once all chunks have been fed, there should be nothing missing.
	pub fn finalize(mut self, era: u64, id: H256) -> Result<Box<JournalDB>, ::error::Error> {
		let missing = self.missing_code.keys().cloned().collect::<Vec<_>>();
		if !missing.is_empty() { return Err(Error::MissingCode(missing).into()) }

		let mut batch = self.db.backing().transaction();
		self.db.journal_under(&mut batch, era, &id)?;
		self.db.backing().write_buffered(batch);

		Ok(self.db)
	}

	/// Get the state root of the rebuilder.
	pub fn state_root(&self) -> H256 { self.state_root }
}

#[derive(Default)]
struct RebuiltStatus {
	// new code that's become available. (code_hash, code, addr_hash)
	new_code: Vec<(H256, Bytes, H256)>,
	missing_code: Vec<(H256, H256)>, // accounts that are missing code.
}

// rebuild a set of accounts and their storage.
// returns a status detailing newly-loaded code and accounts missing code.
fn rebuild_accounts(
	db: &mut HashDB,
	account_fat_rlps: Rlp,
	out_chunk: &mut [(H256, Bytes)],
	known_code: &HashMap<H256, H256>,
	known_storage_roots: &mut HashMap<H256, H256>,
	abort_flag: &AtomicBool,
) -> Result<RebuiltStatus, ::error::Error> {
	let mut status = RebuiltStatus::default();
	for (account_rlp, out) in account_fat_rlps.into_iter().zip(out_chunk.iter_mut()) {
		if !abort_flag.load(Ordering::SeqCst) { return Err(Error::RestorationAborted.into()) }

		let hash: H256 = account_rlp.val_at(0)?;
		let fat_rlp = account_rlp.at(1)?;

		let thin_rlp = {

			// fill out the storage trie and code while decoding.
			let (acc, maybe_code) = {
				let mut acct_db = AccountDBMut::from_hash(db, hash);
				let storage_root = known_storage_roots.get(&hash).cloned().unwrap_or(H256::zero());
				account::from_fat_rlp(&mut acct_db, fat_rlp, storage_root)?
			};

			let code_hash = acc.code_hash.clone();
			match maybe_code {
				// new inline code
				Some(code) => status.new_code.push((code_hash, code, hash)),
				None => {
					if code_hash != KECCAK_EMPTY {
						// see if this code has already been included inline
						match known_code.get(&code_hash) {
							Some(&first_with) => {
								// if so, load it from the database.
								let code = AccountDB::from_hash(db, first_with)
									.get(&code_hash)
									.ok_or_else(|| Error::MissingCode(vec![first_with]))?;

								// and write it again under a different mangled key
								AccountDBMut::from_hash(db, hash).emplace(code_hash, code);
							}
							// if not, queue it up to be filled later
							None => status.missing_code.push((hash, code_hash)),
						}
					}
				}
			}

			::rlp::encode(&acc).into_vec()
		};

		*out = (hash, thin_rlp);
	}
	if let Some(&(ref hash, ref rlp)) = out_chunk.iter().last() {
		known_storage_roots.insert(*hash, ::rlp::decode::<BasicAccount>(rlp)?.storage_root);
	}
	if let Some(&(ref hash, ref rlp)) = out_chunk.iter().next() {
		known_storage_roots.insert(*hash, ::rlp::decode::<BasicAccount>(rlp)?.storage_root);
	}
	Ok(status)
}

/// Proportion of blocks which we will verify `PoW` for.
const POW_VERIFY_RATE: f32 = 0.02;

/// Verify an old block with the given header, engine, blockchain, body. If `always` is set, it will perform
/// the fullest verification possible. If not, it will take a random sample to determine whether it will
/// do heavy or light verification.
pub fn verify_old_block(rng: &mut OsRng, header: &Header, engine: &EthEngine, chain: &BlockChain, always: bool) -> Result<(), ::error::Error> {
	engine.verify_block_basic(header)?;

	if always || rng.gen::<f32>() <= POW_VERIFY_RATE {
		engine.verify_block_unordered(header)?;
		match chain.block_header_data(header.parent_hash()) {
			Some(parent) => engine.verify_block_family(header, &parent.decode()?),
			None => Ok(()),
		}
	} else {
		Ok(())
	}
}